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1 Elementary Symmetric Polynomials

When dealing with polynomials, it is sometimes useful to introduce the idea of
Symmetric Polynomials. A Symmetric Polynomial is simply a polynomial that
has the same result no matter the order in which the input variables are given.
The simplest example would be the product of three variables a, b and c.

f(a, b, c) = abc

This polynomial is indeed symmetric as f(a, b, c) = f(b, c, a) = f(c, a, b) = ....
Swapping the values of some of the variables with each other does not change
the outcome. If one tries to generate all symmetric polynomials with three
variables, which sort of satisfy a ”simplicity” rule (which for now is not well
defined), then they might end with such a result.

e1(a, b, c) = a+ b+ c

e2(a, b, c) = ab+ bc+ ac

e3(a, b, c) = abc

Looking at these polynomials, one can start developing the idea of an Ele-
mentary Symmetric Polynomial. The sum of all possible subsets of the input
variables of the size n, is often denoted as en or sometimes σn. From this def-
inition, you can try to complete the listed elementary symmetric polynomials
with a new one.

eo = 1

However, throughout this chapter, the knowledge about Elementary Symmetric
Polynomials with more than three variables will be unnecessary, it is still useful
to keep in mind the definition of everything we describe for a greater number
of variables. For now, consider what we have and try to prove some properties
about e1, e2 and e3. It is often useful to represent symmetric equations using
elementary symmetric polynomials (more about this later).
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2 Newton-Girard Formula for Symmetric Poly-
nomials in three variables

Something that holds a specific point of interest is the expressions of the form
ak + bk + ck. For this specific problem there exists the Newton-Girard Formula
for Symmetric Polynomials. Define a function Sk(x1, ..., xn) in the following
way.

Sk(x1, ..., xn) =

n∑
i=1

xk
i

Then, the theorem claims that there exists a recursive formula for calculating
Sk.

S1 = e1

S2 = S1e1 − 2e2

S3 = S2e1 − s1e2 + 3e3

...

Sk = −

(
k−1∑
i=1

(−1)jSk−jej

)
− (−1)kkek

The proof of the statement will not be provided here. Here, I will not be
considering the formula for more than three variables, as mentioned earlier.
The Newton-Girard Formula for three variables looks way simpler.

Sk = e1Sk−1 − e2Sk−2 + e3Sk−3

Proving this statement is way much simpler than the general form of the Newton-
Girard Formula.

e1Sk−1 − e2Sk−2 + e3Sk−3 = (a+ b+ c)(ak−1 + bk−1 + ck−1)−
(ab+ bc+ ac)(ak−2 + bk−2 + ck−2) + abc(ak−3 + bk−3 + ck−3) =

ak + bk + ck + abk−1 + ack−1 + bak−1 + bck−1 + cak−1 + cbk−1

− bcak−2 − bak−1 − cak−1 − acbk−2 − abk−1 − abck−2 − ack−1 − cbk−1 − bck−1

+ bcak−2 + acbk−2 + abck−2 = ak + bk + ck

3 Symmetric Inequality

Consider a simple inequality.

a2 + b2 + c2 ≥ ab+ bc+ ca
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Notice, that this is a simple consequence of the Rearrangement Inequality. How-
ever, there exists another elegant solution that requires no knowledge of any
inequalities.

a2 + b2 + c2 − ab− bc− ca =
1

2
(a2 − 2ab+ b2 + a2 − 2ac+ c2 + b2 − 2bc+ c2)

=
1

2
(a− b)2(a− c)2(b− c)2 ≥ 0

Now that we have proven this inequality, let us transform it into an elementary
symmetric polynomial form.

S2(a, b, c) ≥ e2

e21 − 2e2 ≥ e2

e21 ≥ 3e2

Another simple equation that we can prove is that e22 ≥ 3e1e3. We can prove
this by just substituting the definitions of e1, e2 and e3.

(ab+ bc+ ac)2 ≥ 3abc(a+ b+ c)

a2b2 + 2a2bc+ a2c2 + 2ab2c+ 2abc2 + b2c2 ≥ 3a2bc+ 3ab2c+ 3abc2

a2b2 + a2c2 + b2c2 ≥ a2bc+ ab2c+ abc2

The last inequality is simply proven using the Rearrangement inequality by
taking x = [ab, bc, ac] and the same y = [ab, bc, ac], we assume ab ≤ bc ≤ ac and
get the following.

a2b2 + b2c2 + a2c2 = x1y1 + x2y2 + x3y3

≥ x1y3 + x2y1 + x1y2 = a2bc+ ab2c+ abc2

These two inequalities (e21 ≥ 3e2 and e22 ≥ 3e1e3) are the most useful ones.
Using these inequalities along with basic usage of other common inequalities
can help solve a variety of different problems. One might notice that most of
the techniques somehow transform an equation or inequality into a form involv-
ing purely elementary symmetric polynomials and can ask the question: what
if such a form does not exist? Happily, for us, there is a theorem called the
Fundamental Theorem of Symmetric Polynomials, which claims that any sym-
metric polynomial can, in fact, be expressed as an expression using elementary
symmetric polynomials (the theorem applies to any number of variables). The
proof of this statement will also not be provided here due to its complexity.

4 Systems of Symmetric Equations

Say we have three systems of symmetric equations as the following.
x+ y + z = 1

x2 + y2 + z2 = 2

x3 + y3 + z3 = 3
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We want to find the value of x4 + y4 + z4, for example. First of all, transform
the equations using elementary symmetric polynomials.
e1 = 1

e21 − 2e2 = 2

S3 = e1S2 − e2S1 + e3S0 = e31 − 2e1e2 − e2e1 + 3e3 = e31 − 3e1e2 + 3e3 = 5

Now from this we get that e1 = 1, e2 = − 1
2 and from the third equation we can

find e3.

3e3 = 3− e31 + 3e1e2 = 3− 1− 3 · 1 · 1
2
=

1

2

e3 =
1

6

From here, it is simple to extend our knowledge to calculate x4 + y4 + z4 using
the Newton-Girard Formula.

S4 = e1S3 − e2S2 + e3S1 = 3 +
1

2
· 2 + 1

6
=

25

6

However, this wasn’t really solving a system of symmetric equations; all that
happened really was just applying the Newton-Girard Formula multiple times.
Now, let us consider something harder.

xy + yz + xz + xyz = 17

x2yz + xy2z + xyz2 = 36

x2y + x2z + xy2 + 3xyz + xz2 + y2z + yz2 = 66

And again find x4+y4+z4. Do the same as last time: express the system using
elementary symmetric polynomials.

e2 + e3 = 17

e1e3 = 36

e1e2 = 66

The problem of expressing symmetric polynomials through elementary sym-
metric polynomials has a solution; however, almost always, it is just simpler to
notice patterns and try to factor and transform the equation on your own. Now
all that is left is to solve for e1, e2 and e3.

e1e3 + e1e2 = e1(e2 + e3) = 17e1 = 102 ⇐⇒ e1 = 6

e2 =
66

6
= 11

e3 =
36

6
= 6

Now, a cool trick to keep in mind is that sometimes we are interested in finding
such a cubic polynomial P (t) such that x, y, z are all roots of that polynomial.
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This would be useful as from there we can immediately find the solution in the
following way. 

ax3 + bx2 + cx+ d = 0

ay3 + by2 + cy + d = 0

az3 + bz2 + bz + d = 0
ax4 + bx3 + cx2 + dx = 0

ay4 + by3 + cy2 + dy = 0

az4 + bz3 + bz2 + dz = 0

a(x4 + y4 + z4) + b(x3 + y3 + z3) + c(x2 + y2 + z2) + d(x+ y + z) = 0

aS4 + bS3 + cS2 + dS1 = 0

S4 =
−dS1 − cS2 − bS3

a

Making such a polynomial is surprisingly simple. If you want x, y, z to be roots
of a polynomial P (t), simply let P (t) = (t−x)(t− y)(t− z). Expanding out the
expression, we get the following.

P (t) = t3 − t2x− t2y − t2z + txy + txz + tyz − xyz

= t3 − t2(x+ y + z) + t(xy + xz + yz)− xyz

As you can see, all the coefficients are known; they are just the elementary sym-
metric polynomials! This trick applies to an even greater number of variables.

n∏
i=1

(t− ai) = tn − e1t
n−1 + e2t

n−2 − ...

However, again, here, we will not be looking at more than three variables. Going
back to our result, we can now provide such P (t).

P (t) = t3 − 6t2 + 11t− 6

Now, everything left to apply our solution to find S4 is to calculate S1, S2 and
S3.

S1 = e1 = 6

S2 = e21 − 2e2 = 36− 2 · 11 = 14

S3 = e31 − 3e1e2 + 3e3 = 216− 3 · 6 · 11 + 3 · 6 = 36

Substitution all the gathered information we can find S4.

S4 =
6S1 − 11S2 + 6S3

1
= 98

This concludes the solution. What I want you to notice is that the whole idea of
finding a polynomial with roots x, y, z is unnecessary; one could replace all the
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calculations by simply calculating S4 through S1, S2, S3 and e1, e2, e3. In fact,
what was just described is yet another proof or perspective on the Newton-
Girard Formula. Obviously, in such cases, using the Newton-Girard Formula
directly is best. However, if you forgot, you could always remember it using this
trick.
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